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Abstract: This paper provides the implementation of optimal control for an armature-controlled DC motor. The selection of 
error weighted Matrix and control weighted matrix in order to implement optimal control theory for improving the dynamic 
behavior of DC motor is presented. The closed loop performance of Armature controlled DC motor with derived linear 
optimal controller is then evaluated for the transient operating condition (starting). The result obtained from MATLAB is 
compared with that of PID controller and simple closed loop response of the motor. 
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Introduction 
With exploration of space research and missile technology, the complexity and demand of high accuracy for space probe and 
missiles introduced the world optimal control theory during the 1970s. At that time the challenge to scientists and engineers 
was to minimise the weight of satellites and missiles and control them accurately. Ref. [1] The linear quadratic control 
problem has its origins in the celebrated work of N.Wiener on mean –square filtering for weapon fire control during World 
war II (1940-45) . Ref. [2] Wiener solved the problem of designing filters that minimize a mean square error criterion of the 
form   

J = E {e2(T)} 

Where e(t) is the error, and E{x} represents the expected value of the random variable x . Ref. [3] For a deterministic case, 
the above error criterion is generalized as an integral quadratic term as 

J = ∫ e’(t) Q e(t) dt 

Where, Q is some positive definite matrix. R. Bellman in 1957 introduced the technique of dynamic programming to solve 
discrete-time optimal control problems. Ref. [4]  But, the most important contribution to optimal control systems was made 
in 1956 by L S Pontryagin and his associates, in development of his celebrated maximum principle Ref. [5]. In United States, 
R.E Kalman in 1960 provided linear quadratic regulator (LQR) and Linear quadratic Gaussian (LQG) theory to design 
optimal feedback controls. Ref. [6][7] He went on to present optimal filtering and estimation theory leading to his famous 
discrete Kalman filter and the continuous Kalman filter with Bucy Ref. [8]. Kalman had a profound effect on optimal control 
theory and the Kalman filter is one of the most widely used technique in applications of control theory to real world problems 
in variety of fields. 
This paper presents optimal control of a DC motor such that it improves the transient response of the DC motor and reduces 
the steady state error in the motor speed. Section 2 details the optimal control theory. Section 3gives the state space model of 
DC motor derived from machine equations and fundamental laws of science. Section 4 compares the closed loop 
performance of motor without compensation, with PID Control action and with linear quadratic regulator. Section 5 
summarizes all the significant conclusions drawn from the paper. 
 
Optimal Control Theory 
The main objective is to determine control signals that will cause a process(plant) to satisfy some physical constraints and at 
the same time extremize (maximize or minimize) a chosen performance criterion ( performance index or cost function).Ref. 
[8] A designer aims at finding the optimal control vector that will drive the plant P from initial state to final state with some 
constraints on controls and states and at the same time extremizing the given performance index J . 
The formulation of optimal control problem requires  

1. A mathematical description (or model) of the process to be controlled (generally in state variable form), 
2. A specification of performance index, and 
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3. A statement of boundary conditions and the physical constraints on the states and /or controls. 
 

Performance Index 
The typical performance criteria in classical control design are system time response to step or ramp input characterized by 
rise time, settling time, peak overshoot, and steady state accuracy; and the frequency response of the system characterized by 
gain and phase margins, and bandwidth. 
Performance Index (PI) can be calculated or measured and used to evaluate system performance. Ref. [8] System 
performance is needed to be observed because of the need for – parameter optimization, design of optimum system and 
operation of modern adaptive control system. 
The optimal control problem is to find a control which causes the dynamical system to reach a target or follow a state 
variable or trajectory and at the same time extremize a performance index(PI) which may take several forms described as : 

1. PI for Time-optimal Control system:  In minimum time system to be transferred from an arbitrary initial state x(t0) to 
a specified final state x(tf). 

J	 = 	 dt 

 
2. PI for fuel-optimal Control system: For minimization of the total expenditure of fuel. Assume magnitude |u(t)| is 

proportional to the rate of fuel consumption, where |u(t)| is the thrust of rocket engine. 

J	 = 	 |u(t)|		dt 

 
3. Performance Index for Minimum-Energy Control system: For minimization of the total expended energy. Consider a 

resistive circuit where Ri is the resistance of the ith loop and ui is the current in that loop.  

J	 = 	 R |u (t)|		dt 

4. PI for terminal Control system: For minimization of error between the desired target position xd(tf)  and the actual 
target xa(t) at the final time tf. 

5. PI for general optimal control system 

J	 = x 	(t )Fx(t ) + [	x 	(t)Qx(t) + 	u 	(t)Ru(t)]	dt 

Where R is a positive definite matrix, Q and F are positive semi-definite matrix respectively. Q and R may be time 
varying. This particular form is called quadratic ( in terms of states and controls)form. 
 

Constraints 
The control u(t) and state x(t) vectors are either unconstrained or constrained depending upon the physical situation. The 
unconstrained problem is less involved and gives rise to some results. From the physical considerations, we have controls and 
states, such as currents and voltages in an electrical circuit, speed of a motor, thrust of a rocket, constrained as 

U+ < u(t) < U- and X- < x(t) < X+ 

Where + and – indicate the maximum and minimum values the variables can attain. 
 

Formal Statement Of Optimal Control System 
The optimal control problem is to find the optimal control u*(t) (* indicates extremal or optimal value) which causes the 
linear time-invariant plant (system) 

ẋ(t) = A x(t) + B u(t) 
to give the trajectory ẋ(t) that optimizes or extremizes( minimizes or maximizes) a performance index 

J= x’(tf) F x(tf) + ∫ [ x’(t) Q x(t) + u’(t) R u(t) ]dt 

Or which causes the non linear system ẋ(t) = f (x(t),u(t),t) to give the state x*(t) that optimizes the general performance index 

J = S(x(tf),tf) + ∫ V (x(t),u(t),t)dt 

With some constraints on the control variable u(t) and/or the state variables x(t) . The final time tf may be fixed or free, and 
the final (target) state may be fully or partially fixed or free. 
Ref. [8] The optimal control systems are studied in three stages: 
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1. In the first stage, we consider the performance index and use the well known theory of calculus of variations to 
obtain optimal functions. 

2. In second stage, we bring in the plant and try to address the problem of finding optimal control u*(t) which will 
drive the plant and at the same time optimize the performance index. 

3. Finally, the topic of constraints on the controls and states is considered along with the plant and performance 
index to obtain optimal control. 

 
Different Type of Systems 
Different cases depending on the statement of problem regarding the final time tf and the final state x(tf) 

1. Type (a) Fixed- final time and fixed- final state system: Here, since tf and x(tf) are fixed or specified and there is 
no extra boundary condition to be used other than those given in the problem formulation. 

2. Type (b) Free-final Time and fixed-final state system: tf is free or not specified in advance, δ tf  is arbitrary and 
x(tf) is fixed or specified. 

3. Type (c) Fixed-final time and free-final state system: Here tf  is specified and x(tf) is free. 
4. Type (d) Free-final time and dependent free-final state system : tf  and x(tf) are related such that x(tf) lies on a 

moving curve with respect to tf. 
5. Type (e) Free-final time and Independent Free-final state: tf and x(tf) are not related. 
 

Open-loop Optimal Control 
One has to construct or realize an open-loop optimal controller and in most cases it is very tedious. Also, changes in plant 
parameters are not taken into account by open-loop optimal controller which prompts us to think in terms of closed loop 
optimal controller i.e. to obtain optimal u*(t) in terms of state x*(t). Ref. [8] This closed loop optimal controller will have 
advantages such as sensitive to plant parameter variations and simplified construction of the controller. 
 
Matrices in Performance Indices 

1. The error weighted matrix Q(t) : In order to keep the error e(t) small an error squared non-negative, the integral of 
the expression 0.5 e’(t)Q(t)e(t) should be non-negative and small. Thus, the matrix Q(t) must be positive semi-
definite. Due to the quadratic nature of the Weightage, large errors require more attention than small errors. 

2. The control weighted matrix R(t): The quadratic nature of the control cost expression 0.5u’(t)R(t)u(t) indicates that 
larger control effect requires higher cost. Since the cost of the control has to be a positive quantity, the matrix R(t) 
should be positive definite. 

3. The control signal u(t): The assumption that there are no constraints on the control u(t) is very important in obtaining 
the closed loop optimal configuration. 

4. The terminal cost weighted matrix F(tf) : The main purpose of this term is to ensure that the error e(t) at the final 
time tf  is small as possible. To guarantee this, the corresponding matrix F(tf) should be positive semi-definite. 
Further, without loss of generality, we assume that the weighted matrices Q(t), R(t) and F(t) are symmetric. The 
quadratic performance index has attractive features: 

 It provides an elegant procedure for the design of closed-loop optimal controller. 
 It results in the optimal feedback control that is linear in state function. 

5. Infinite Final time : When the final time tf is infinity, the terminal cost term involving F(tf) must be zero. 
 

Closed-loop Optimal Control 
To formulate a closed-loop optimal control i.e. to obtain the optimal control u*(t)  

u*(t) = - R-1 (t) B’(t) P(t) x*(t) 

which is now a negative feedback of the state x*(t). This negative feedback resulted from ‘theoretical development’ or 
‘mathematics’ of optimal control procedure and not introduced intentionally .Fig. 1 shows a closed loop optimal control 
system with infinite final time  which means that the system  needs to be follow the desired signal for the whole processing 
time. 
 
Matrix Differential Riccati Equation 
P(t) is not dependent on the initial state which satisfies the matrix differential equation 

Ṗ(t) + P(t) A(t) + A’(t) P(t) + Q(t) – P(t) B(t) R-1 (t) B’(t) P(t) = 0 
This is the matrix differential equation of the Riccati type and often called the matrix differential Riccati Equation (DRE). 
Also, P(t) is called the Riccati coefficient matrix or simply Riccati matrix or Riccati coefficient and the optimal control 
(feedback) law can be given as 
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Figure 1: Implementation of closed-loop optimal control: Infinite final time 

 
u*(t) = - R-1 (t) B’(t) P(t) x*(t) 

The matrix DRE can also be written in a compact form as  
Ṗ(t) = - P(t) A(t) - A’(t) P(t) - Q(t) + P(t) E(t) P(t) 

Where E(t) = B(t) R-1 (t) B’(t) 
Symmetric Property of the Riccati Coefficient Matrix: An important property of Riccati matrix P(t) is that n x n matrix P(t) is 
symmetric for all [t0,tf] i.e. P(t)= P’(t). Ref. [8] The matrices F(tf) , Q(t) and R(t) are symmetric and therefore, the matrix B(t) 
R-1 (t) B’(t) is also symmetric. 

 
Salient features of state regulator system and matrix differential Riccati equation 

1. Riccati Coefficient P(t) : P(t) is a time-varying matrix which depends upon the system matrices A(t) and B(t), the 
performance index (design) matrices Q(t), R(t) and F(tf) and the terminal time tf but P(t) does not depend upon the 
initial state x(t0) of the system. 

2. P(t) is symmetric and hence it follows that the n x n order matrix DRE represents a system of n(n+1)/2 first order 
non-linear, time-varying, ordinary differential equations. 

3. Optimal Control: The optimal control u*(t) is minimum (maximum) if the control weighted matrix R(t0 is positive 
definite (negative definite). 

4. Optimal state: Using the optimal control , 
u*(t) = - R-1 (t) B’(t) P(t) x*(t)  

  in state equation ẋ(t) = A x(t) + B u(t)  
we have, 
ẋ(t) = [A (t) - B (t) R-1 (t) B’(t) P(t)] x*(t) = G(t) x*(t) 
where  
G(t) = A (t) - B (t) R-1 (t) B’(t) P(t) 
The solution of this state differential equation along with the initial condition x(t0) give sthe optimal state x*(t). 
There is no condition on the closed-loop matrix G(t) regarding stability as long as the finite final time (tf) system is 
considered. 

5. Optimal Cost: The minimum cost J* is given by 
J* = (1/2) x*’(t) P(t) x*(t) for  t= [t0,tf] 
Where, P(t) is the solution of matrix DRE and x*(t) is the solution of the closed-loop optimal system. 

6. Definiteness of the Matrix P(t) : Since F(tf) is positive semi-definite, and P(tf) = F(tf) this reflects that P(tf) is positive 
semi-definite, symmetric matrix. 

7. Independence of Riccati Coefficient Matrix  : The matrix P(t) is independent of the optimal state x*(t), so that once 
the system and the cost are specified, i.e. once the system/plant matrices A(t) and B(t) are given, and the 
performance index matrices F(tf), Q(t) and R(t), the matrix P(t) can be independently computed before optimal 
system operates in the forward direction from its initial condition. 

8. Implementation of the Optimal Control: Fig.2 represents the  block diagram implementing the closed-loop optimal 
controller as shown below. 
The figure shows clearly that the closed loop optimal controller  gets its values of P(t) externally, after solving the 
matrix DRE backward in time from t= tf to t =  t0 and hence there is no way that teh closed loop optimal control 
configuration can be implemented. 

9. Linear Optimal Control: The optimal feedback control u*(t) given as 
u*(t) = - K(t) x*(t) where, the Kalman gain K(t) = R-1 (t) B’(t) P(t) 
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Figure 2: Closed-Loop Optimal Control Implementation 

 
10. Controllability: As long as it is a finite time system, the need of controllability condition on the system for 

implementing the optimal feedback control is not there because the contribution of those uncontrollable states to the 
cost function is still a finite quantity only. 

 
State Space Model of DC Motor 
A physical plant can be described by a set of linear or non-linear differential equations. Fig.3 depicts the equivalent circuit of 
a DC motor armature is based on the fact that the armature winding has a resistance Ra, a self inductance La, and an induced 
emf Vb. Ref. [9] In case of a motor , the input energy is electrical energy and the output is the mechanical energy, with an air 
gap torque Tm at rotational speed ωm. Armature controlled dc motor uses armature Voltage Va as the control variable. 
 
 
 
 
 
 
 
 

Figure 3: Model of a DC motor 
 
The voltage equation of DC Motor is given as: 

Va(s) = Ra Ia(s) + La s Ia(s) + Vb (s) 
In steady state , the armature current is constant and the rate of change of armature current is zero. The voltage equation of 
DC Motor is given as: 

Va(s) = Ra Ia(s) + Vb (s) 
The air gap power is expressed in terms of the electromagnetic torque and speed as 

Pa=ωm Tm = Vb Ia 

 
Motor torque is given as  

Tm(s) = Km Ia(s) 
 
In case of permanent magnet dc motor Φ is constant because the field winding here is replaced by permanent magnet. Km is 
function of permeability of magnetic material and also known as the torque constant. 
From Faraday’s law,the induced emf if the armature conductors are divided into ‘A’ parallel paths (neglecting the sign) is 

Vb= Z ΦfP Nr / (60 A) 
 

There two possible arrangements of conductors in the armature, wave winding s and lap windings. A= 2 for wave windings 
and A= P for lap winding ( P represents the number of poles of the motor). In compact form we have 

Vb= K Φf  ωm 
Where ωm  = 2лNr/60 rad/sec and K = (P/A)Z(1/2л) 
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If field flux is constant, then the induced emf is proportional to the rotor speed and the constant of proportionality is known 
as the induced emf constant or back emf constant. Then the induced emf is represented as 

Vb= Kb ωm 
Where Kb is the induced emf constant , given by Kb = K Φf   Volt/(rad/sec) 
 
For simplicity, the load is modelled as a moment of inertia,J,in Kg-m2/sec2, with a viscous friction coefficient B in N-
m/(rad/sec). Then the acceleration torque Ta in N-m drives the load and is given by 

J(d ωm/dt) + B ωm = Tm – Tl = Ta 
Where Tl  is the load torque. 
The dynamic equations are cast in state space form and are given by 
The state equation, 

 
Where p is the differential operator with respect to time. The above equation is expressed compactly in the form given by ẋ = 
A x  + B u where x =[Ia  ωm]’, u =[V], x is the state variable vector and u is the input vector[9]. 
The output equation is given by,  
ωm = [1  0] ωm 
 
Results 
The LQR design minimizes a weighted squared state error  and control effort to achieve a state feedback controller design. 
The optimal feedback state regulation, minimizes the quadratic cost function ( performance index) 
J = ∫ (xT(t) Q x(t) + uT(t) R u(t)) for [limits tending from 0 to infinity] 
The specifications of separately excited DC Motor are shown in Table 1. The transfer function of the motor in closed loop is 
obtained from MATLAB script file given as 
        0.023 

θ(S) /Va(S)      =   -------------------------------------------- 
        0.005 s^2 + 0.01002 s + 0.02356 
 
To control the speed of DC Motor, a traditional PID Controller is designed using trial and error method first. After several 
iterations, the values of Ki, Kp and Kd are chosen as Kp=10,Ki=10,Kd=5. Speed response of traditional PID controller is 
shown here in section B. The characteristic equation with PID controller is 
0.005 s^3 + 0.01002 s^2 + 0.000559 s = 0 
In state space representation the system matrices obtained from the MATLAB Script file and the motor specifications which 
are as follows  
A= [ -0.003 2.3 ; -0.046      -2] 
B= [ 0;2] 
C= [1   0] 
D= [0] 
Weighting matrices Q and R are selected as Q = [0.1 0,0 0.0001]’ and R[0.1]. The step response of closed loop optimal 
control DC motor is shown in section C. Table 2 lists the performance of PID controller and LQR along with open loop 
system MATLAB Script file is used to describe the system performance. In order to compare the results of closed loop 
optimal controller with closed loop system and PID controller with MATLAB environment is used. 
The analysis from section D and table 2 shows that the motor performance with optimal control is best suited because the 
performance measures such as settling time is the least for optimal control, no overshoot and  zero steady state error. The 
Riccati coefficient, P obtained is, P = [0.0772    0.0487; 0.0487    0.0400], which is positive semi-definite, symmetric matrix. 
This Riccati coefficient is further used to obtain the optimal state x*(t) (here Ia i.e. Armature current and  ωm  i.e. angular 
speed of the armature). State feedback gain matrix, K= [0.9749    0.8009]. The feedback gain matrix is then used to obtain the 
optimal control u*(t) i.e. V (Armature voltage). Desired pole location at which system is optimal is, E = [-1.8024 + 1.1630i;-
1.8024 - 1.1630i]. The optimal performance index can then be obtained from the optimal state x*(t) and Riccati coefficient P. 
It is clear from the results that the motor speed tracks the desired signal with good transient response. Here the results of the 
control system are response for step change in desired signal. 
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Table 1. Separately excited DC Motor Specifications 
 

DC motor specifications  

Particulars Value Unit 

Moment Of Inertia, J 0.01 Kg-m2 

Back emf constant & 
Torque constant, Ka 

0.023 Nm/A 

Viscous friction constant, b 0.00003 Nms 

Armature resistance, R 1 ohm 

Armature Inductance, L 0.5 Henry 

 

 

Figure 4. Step response of closed loop system 
 

 
 

Figure 5. Step response of closed loop system with PID control action 
 

 
 

Figure 6. Step response of closed loop optimal control system 
 



Optimal Control of DC Motor using Linear Quadratic Regulator  15 
 

Table 2.  Comparison of Results 
 

System 
Performan
ce 

Comparison 

Closed loop 
system 

Closed loop 
system with PID 
controller 

Closed loop 
optimal 

controller 
Settling 
time, Ts 5.77 sec 3.19 sec 2.24 sec 

Maximum 
Overshoot, 
Mp 

Amplitude- 
1.17 
At 1.62 sec 

Amplitude – 
1.03 
At 0.748 sec 

0 

Steady 
state 
error,ess 

0.023 0 0 

 

 
 

Figure 7. Step response of closed loop, motor with PID control and optimal control 
 

Conclusion 
This paper proposes an approach to control design of a DC motor based on LQR control design. The mechanical and 
electrical parameters of DC motor are used to obtain the response for the system. The LQR design provides an optimal state 
feedback control that minimizes the quadratic error and control effort. On comparison between the simple closed loop 
system, closed loop system with PID control action and closed loop optimal controller, the transient response and steady state 
error in the response due to closed-loop optimal controller yields the best result. 
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